Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Adv ; 9(35): eadg9204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656782

RESUMO

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Humanos , Vírus da Febre Amarela/genética , Filogenia , Brasil/epidemiologia , Febre Amarela/epidemiologia , Surtos de Doenças , Genômica
2.
Indian J Med Res ; 157(4): 293-303, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102510

RESUMO

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.


Assuntos
COVID-19 , Ingredientes de Alimentos , Humanos , Nutrigenômica , Dióxido de Carbono , Lipopolissacarídeos , Pandemias , Síndrome da Liberação de Citocina , Ácido Palmítico , SARS-CoV-2 , Dieta/métodos , Comportamento Alimentar , Zinco , Chá , Ferro , Triglicerídeos
3.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675931

RESUMO

Ophiocordyceps australis (Ascomycota, Hypocreales, Ophiocordycipitaceae) is a classic entomopathogenic fungus that parasitizes ants (Hymenoptera, Ponerinae, Ponerini). Nonetheless, according to our results, this fungal species also exhibits a complete set of genes coding for plant cell wall degrading Carbohydrate-Active enZymes (CAZymes), enabling a full endophytic stage and, consequently, its dual ability to both parasitize insects and live inside plant tissue. The main objective of our study was the sequencing and full characterization of the genome of the fungal strain of O. australis (CCMB661) and its predicted secretome. The assembled genome had a total length of 30.31 Mb, N50 of 92.624 bp, GC content of 46.36%, and 8,043 protein-coding genes, 175 of which encoded CAZymes. In addition, the primary genes encoding proteins and critical enzymes during the infection process and those responsible for the host-pathogen interaction have been identified, including proteases (Pr1, Pr4), aminopeptidases, chitinases (Cht2), adhesins, lectins, lipases, and behavioral manipulators, such as enterotoxins, Protein Tyrosine Phosphatases (PTPs), and Glycoside Hydrolases (GHs). Our findings indicate that the presence of genes coding for Mad2 and GHs in O. australis may facilitate the infection process in plants, suggesting interkingdom colonization. Furthermore, our study elucidated the pathogenicity mechanisms for this Ophiocordyceps species, which still is scarcely studied.

4.
Environ Microbiol ; 24(10): 4714-4724, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859337

RESUMO

We investigated whether a set of phylogeographical tracked emergent events of Orthocoronavirinae were related to developed, urban and polluted environments worldwide. We explored coronavirus records in response to climate (rainfall parameters), population density, CO2 emission, Human Developmental Index (HDI) and deforestation. We contrasted environmental characteristics from regions with spillovers or encounters of wild Orthocoronavirinae against adjacent areas having best-preserved conditions. We used all complete sequenced CoVs genomes deposited in NCBI and GISAID databases until January 2021. Except for Deltacoronavirus, concentrated in Hong Kong and in birds, the other three genera were scattered all over the planet, beyond the original distribution of the subfamily, and found in humans, mammals, fishes and birds, wild or domestic. Spillovers and presence in wild animals were only reported in developed/densely populated places. We found significantly more occurrences reported in places with higher HDI, CO2 emission, or population density, along with more rainfall and more accentuated seasonality. Orthocoronavirinae occurred in areas with significantly higher human populations, CO2 emissions and deforestation rates than in adjacent locations. Intermediately disturbed ecosystems seemed more vulnerable for Orthocoronavirinae emergence than forested regions in frontiers of deforestation. Sadly, people experiencing poverty in an intensely consumerist society are the most vulnerable.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Dióxido de Carbono , Conservação dos Recursos Naturais , Ecossistema , Humanos , Mamíferos
6.
Vaccines (Basel) ; 10(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35334975

RESUMO

One hundred years after the flu pandemic of 1918, the world faces an outbreak of a new severe acute respiratory syndrome, caused by a novel coronavirus. With a high transmissibility, the pandemic has spread worldwide, creating a scenario of devastation in many countries. By the middle of 2021, about 3% of the world population had been infected and more than 4 million people had died. Different from the H1N1 pandemic, which had a deadly wave and ceased, the new disease is maintained by successive waves, mainly produced by new virus variants and the small number of vaccinated people. In the present work, we create a version of the SIR model using the spatial localization of persons, their movements, and considering social isolation probabilities. We discuss the effects of virus variants, and the role of vaccination rate in the pandemic dynamics. We show that, unless a global vaccination is implemented, we will have continuous waves of infections.

7.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
8.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
9.
Neotrop Entomol ; 51(1): 43-53, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34590292

RESUMO

The patterns of insect movement are the cumulate product of many individual decisions and can be shaped by the way morphology and behaviour interacts with landscape structure and composition. Hence, the ongoing process of habitat fragmentation increases the distance among suitable habitats and changes those in such a way that it may favour some movement behaviour. Our study described some biological traits (sex ratio, age structure and individual permanence in a population), as well as the movements of fruit-feeding butterflies along the horizontal dimension (among habitats: forest interior, natural forest transition - ecotone and anthropogenic forest transition - edge) and the vertical dimension (between canopy and understory). We sampled butterflies monthly over 1 year in the Atlantic rainforest, South-eastern Brazil, following a standardized design using bait traps. We found that sex ratio was male biased for five out of the six more abundant species and the age structure showed an increase in recruitment of new individuals in the dry season followed by a noticeable aging of the populations in the wet season. In general, our results revealed an aggregated spatial distribution, in which few individuals travelled long distances while most individuals were recaptured in the same trap, suggesting that all studied habitats currently provide the necessary conditions for the maintenance of butterfly populations, favouring fewer movements and narrow home ranges for both sexes and species. Conservation of a set of heterogeneous habitats it is especially important for the maintenance of sedentary butterflies and of those that move large distances.


Assuntos
Borboletas , Animais , Ecossistema , Florestas , Frutas , Floresta Úmida
11.
Landsc Urban Plan ; 216: None, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675450

RESUMO

Being a Re-Emerging Infectious Disease, dengue causes 390 million cases globally and is prevalent in many urban areas in South America. Understanding the fine-scale relationships between dengue incidence and environmental and socioeconomic factors can guide improved disease prevention strategies. This ecological study examines the association between dengue incidence and satellite-based vegetation greenness in 3826 census tracts nested in 474 neighborhoods in Belo Horizonte, Brazil, during the 2010 dengue epidemic. To reduce potential bias in the estimated dengue-greenness association, we adjusted for socioeconomic vulnerability, population density, building height and density, land cover composition, elevation, weather patterns, and neighborhood random effects. We found that vegetation greenness was negatively associated with dengue incidence in a univariate model, and this association attenuated after controlling for additional covariates. The dengue-greenness association was modified by socioeconomic vulnerability: while a positive association was observed in the least vulnerable census tracts, the association was negative in the most vulnerable areas. Using greenness as a proxy for vegetation quality, our results show the potential of vegetation management in reducing dengue incidence, particularly in socioeconomically vulnerable areas. We also discuss the role of water infrastructure, sanitation services, and tree cover in lowering dengue risk.

12.
Sci Rep ; 11(1): 19062, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561510

RESUMO

Metalliferous soils can selectively shape plant species' physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth. Our investigation explored the capacity of natural metal accumulation in a tropical tree species, Eremanthus erythropappus (Asteraceae) and the effects of such bioaccumulation on plant responses to herbivory. Seedlings of E. erythropappus were grown in a glasshouse on soils that represented a metal concentration gradient (Al, Cu, Fe, Mn and Zn), and then the exposed plants were fed to the herbivores in a natural habitat. The effect of herbivory on plant growth was significantly mediated by foliar metal ion concentrations. The results suggest that herbivory effects on these plants change from negative to positive depending on soil metal concentration. Hence, these results provide quantitative evidence for a previously unsuspected interaction between herbivory and metal bioaccumulation on plant growth.


Assuntos
Asteraceae/metabolismo , Herbivoria , Metais/metabolismo , Poluentes do Solo/metabolismo , Asteraceae/crescimento & desenvolvimento , Modelos Químicos
13.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372319

RESUMO

Ecological environments research helps to assess the impacts on forests and managing forests. The usage of novel software and hardware technologies enforces the solution of tasks related to this problem. In addition, the lack of connectivity for large data throughput raises the demand for edge-computing-based solutions towards this goal. Therefore, in this work, we evaluate the opportunity of using a Wearable edge AI concept in a forest environment. For this matter, we propose a new approach to the hardware/software co-design process. We also address the possibility of creating wearable edge AI, where the wireless personal and body area networks are platforms for building applications using edge AI. Finally, we evaluate a case study to test the possibility of performing an edge AI task in a wearable-based environment. Thus, in this work, we evaluate the system to achieve the desired task, the hardware resource and performance, and the network latency associated with each part of the process. Through this work, we validated both the design pattern review and case study. In the case study, the developed algorithms could classify diseased leaves with a circa 90% accuracy with the proposed technique in the field. This results can be reviewed in the laboratory with more modern models that reached up to 96% global accuracy. The system could also perform the desired tasks with a quality factor of 0.95, considering the usage of three devices. Finally, it detected a disease epicenter with an offset of circa 0.5 m in a 6 m × 6 m × 12 m space. These results enforce the usage of the proposed methods in the targeted environment and the proposed changes in the co-design pattern.


Assuntos
Algoritmos , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Desenho de Equipamento , Humanos , Software
14.
An Acad Bras Cienc ; 93(suppl 3): e20210431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34378637

RESUMO

A second deadlier wave of COVID-19 and the causes of the recent public health collapse of Manaus are compared with the Spanish flu events in that city, and Brazil. Historic sanitarian problems, and its hub position in the Brazilian airway network are combined drivers of deadly events related to COVID-19. These drivers were amplified by misleading governance, highly transmissible variants, and relaxation of social distancing. Several of these same factors may also have contributed to the dramatically severe outbreak of H1N1 in 1918, which caused the death of 10% of the population in seven months. We modelled Manaus parameters for the present pandemic and confirmed that lack of a proper social distancing might select the most transmissible variants. We succeeded to reproduce a first severe wave followed by a second stronger wave. The model also predicted that outbreaks may last for up to five and half years, slowing down gradually before the disease disappear. We validated the model by adjusting it to the Spanish Flu data for the city, and confirmed the pattern experienced by that time, of a first stronger wave in October-November 1918, followed by a second less intense wave in February-March 1919.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Pandêmica, 1918-1919 , Brasil , História do Século XX , Humanos , Floresta Úmida , SARS-CoV-2 , Sindemia
15.
Ecology ; 102(4): e03301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565639

RESUMO

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

16.
J Med Entomol ; 58(1): 333-342, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-32785582

RESUMO

We provide the first evidence of a recent invasion of Aedes aegypti (Linnaeus in Hasselquist, 1762) and Aedes albopictus (Skuse 1894), followed by dengue virus, in tropical montane cities in south-eastern Brazil, Mariana, and Ouro Preto, at mid and high altitudes, respectively. Long-term temperature variation, dengue public data, and sampling of immature and adult mosquitoes (ovitraps and mosquitraps) in contrasting habitats were used to explain the distribution of Aedes in what in these two cities. From 1961 to 2014, the annual temperature increased significantly due to increases in winter temperatures. In the 1990s/2000s, the winter temperature was 1.3°C warmer than in the 1960s, when it varied from 21.2 to 18.9°C. After 2007, the winter temperatures increased and ranged from 21.6 to 21.3°C. The first autochthonous dengue cases in Mariana and Ouro Preto were in 2007, followed by few occurrences until in 2012, when the mean numbers increased three-fold, and peak at 2013. The continuous 'warmer winter' may have trigged the Aedes invasion. Aedes species benefited from higher winter temperatures, which was an important driver of their invasion of the state of Minas Gerais in the 1980s and, more recently, in the remaining montane urban habitats in this region. In both 2009 and 2011, we found more Aedes in Mariana than Ouro Preto, and more Ae. albopictus in green areas and Ae. aegypti in houses, the expected pattern for well-established populations.


Assuntos
Aedes/fisiologia , Distribuição Animal , Ecossistema , Tempo (Meteorologia) , Aedes/crescimento & desenvolvimento , Altitude , Animais , Brasil , Cidades , Clima , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Estações do Ano
17.
Zootaxa ; 4881(2): zootaxa.4881.2.6, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33311317

RESUMO

The Rio Doce State Park ("PERD") is the largest Atlantic Forest remnant in Minas Gerais State, Brazil, with predominantly semi-deciduous forests. The longhorned beetles of the Cerambycinae subfamily (Coleoptera: Cerambycidae) are distributed worldwide, developing on healthy, stressed or recently dead trees. Faunistic surveys are necessary to understand about the Minas Gerais' cerambycid fauna due to a lack of research, especially in the eastern region of the state. A list of species of the subfamily Cerambycinae (Coleoptera: Cerambycidae), collected in the PERD during the rainy season (September 2013- February 2014), is presented. The beetles were collected using a light trap and through their emergence from Anadenanthera colubrina (Vell.) Brenan (Fabaceae) logs. A total of 663 individuals of 33 species, 30 genera, and 15 tribes of the Cerambycinae subfamily were collected. The species Malacopterus tenellus (Fabricius, 1801) was registered for the first time in Minas Gerais State, while A. colubrina is a new host plant for 14 Cerambycinae species. The geographical distribution, number of host plants and materials examined are presented for each species collected. This is the first list of Cerambycidae species from the Rio Doce State Park.


Assuntos
Besouros , Animais , Brasil , Florestas , Estações do Ano , Inquéritos e Questionários
18.
An Acad Bras Cienc ; 92(4): e20201139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32965306

RESUMO

The spread of SARS-CoV-2 and the distribution of cases worldwide followed no clear biogeographic, climatic, or cultural trend. Conversely, the internationally busiest cities in all countries tended to be the hardest hit, suggesting a basic, mathematically neutral pattern of the new coronavirus early dissemination. We tested whether the number of flight passengers per time and the number of international frontiers could explain the number of cases of COVID-19 worldwide by a stepwise regression. Analysis were taken by 22 May 2020, a period when one would claim that early patterns of the pandemic establishment were still detectable, despite of community transmission in various places. The number of passengers arriving in a country and the number of international borders explained significantly 49% of the variance in the distribution of the number of cases of COVID-19, and number of passengers explained significantly 14.2% of data variance for cases per million inhabitants. Ecological neutral theory may explain a considerable part of the early distribution of SARS-CoV-2 and should be taken into consideration to define preventive international actions before a next pandemic.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Viagem , Aeronaves , Betacoronavirus , COVID-19 , Cidades , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
19.
PeerJ ; 8: e9446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617196

RESUMO

BACKGROUND: We investigated a likely scenario of COVID-19 spreading in Brazil through the complex airport network of the country, for the 90 days after the first national occurrence of the disease. After the confirmation of the first imported cases, the lack of a proper airport entrance control resulted in the infection spreading in a manner directly proportional to the amount of flights reaching each city, following the first occurrence of the virus coming from abroad. METHODOLOGY: We developed a Susceptible-Infected-Recovered model divided in a metapopulation structure, where cities with airports were demes connected by the number of flights. Subsequently, we further explored the role of the Manaus airport for a rapid entrance of the pandemic into indigenous territories situated in remote places of the Amazon region. RESULTS: The expansion of the SARS-CoV-2 virus between cities was fast, directly proportional to the city closeness centrality within the Brazilian air transportation network. There was a clear pattern in the expansion of the pandemic, with a stiff exponential expansion of cases for all the cities. The more a city showed closeness centrality, the greater was its vulnerability to SARS-CoV-2. CONCLUSIONS: We discussed the weak pandemic control performance of Brazil in comparison with other tropical, developing countries, namely India and Nigeria. Finally, we proposed measures for containing virus spreading taking into consideration the scenario of high poverty.

20.
J Anim Ecol ; 89(8): 1754-1765, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32198927

RESUMO

Traditionally, most studies have described the organization of host-parasite interaction networks by considering only few host groups at limited geographical extents. However, host-parasite relationships are merged within different taxonomic groups and factors shaping these interactions likely differ between host and parasite groups, making group-level differences important to better understand the ecological and evolutionary dynamics of these interactive communities. Here we used a dataset of 629 ectoparasite species and 251 species of terrestrial mammals, comprising 10 orders distributed across the Nearctic and Neotropical regions of Mexico to assess the species-level drivers of mammalian ectoparasite faunas. Specifically, we evaluated whether body weight, geographical range size and within-range mammal species richness (i.e. diversity field) predict mammal ectoparasite species richness (i.e. degree centrality) and their closeness centrality within the mammal-ectoparasite network. In addition, we also tested if the observed patterns differ among mammal orders and if taxonomic closely related host mammals could more likely share the same set of ectoparasites. We found that ectoparasite species richness of small mammals (mainly rodents) with large proportional range sizes was high compared to large-bodied mammals, whereas the diversity field of mammals had no predictive value (except for bats). We also observed that taxonomic proximity was a main determinant of the probability to share ectoparasite species. Specifically, the probability to share ectoparasites in congeneric species reached up to 90% and decreased exponentially as the taxonomic distance increased. Further, we also detected that some ectoparasites are generalists and capable to infect mammalian species across different orders and that rodents have a remarkable role in the network structure, being closely connected to many other taxa. Hence, because many rodent species have synanthropic habits they could act as undesired reservoirs of disease agents for humans and urban animals. Considering the reported worldwide phenomenon of the proliferation of rodents accompanying the demographic decrease or even local extinction of large-bodied mammal species, these organisms may already be an increasing health threat in many regions of the world.


Assuntos
Ectoparasitoses , Parasitos , Doenças dos Roedores , Animais , Ectoparasitoses/veterinária , Interações Hospedeiro-Parasita , Mamíferos , México , Doenças dos Roedores/epidemiologia , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA